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Abstract. We introduce a compromise value for non-transferable utility games:
the Chi-compromise value. It is closely related to the Compromise value in-
troduced by Borm, Keiding, McLean, Oortwijn, and Tijs (1992), to the MC-
value introduced by Otten, Borm, Peleg, and Tijs (1998), and to the W-value
introduced by Bergantiños, Casas-Méndez, and Vázquez-Brage (2000). The
main di¤erence being that the maximal aspiration a player may have in the
game is his maximal (among all coalitions) marginal contribution. We show
that it is well defined on the class of totally essential and non-level games. We
propose an extensive-form game whose subgame perfect Nash equilibrium
payo¤s coincide with the Chi-compromise value.
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1 Introduction

The purpose of this paper is to introduce a new compromise value for non-
transferable utility games (NTU-games): the Chi-compromise value. As with
all compromise values it chooses as the solution of the game the e‰cient vec-
tor lying in the segment between the vectors of maximal and minimal utilities
that each player may expect to obtain; that is, it is a compromise between their
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maximum and minimum aspirations. For pure bargaining problems (that is,
situations where all agreements have to be unanimous) the Kalai-Smorodinsky
solution (Kalai and Smorodinsky (1975)) is based on a compromise of this
type. When partial agreements are possible and utility is transferable across
players (that is, TU-games) we defined (Bergantiños and Massó (1996)) a com-
promise value called the Chi value. Our proposal here extends these two par-
ticular solutions to general problems where players may reach partial agree-
ments and utility is not necessarily transferable (that is, NTU-games).

We propose as the maximum aspiration for a player in a game his maximal
(among all coalitions) marginal contribution and as the minimum aspiration
the maximum remainder he can obtain by going with a coalition of players
and o¤ering them their maximum aspirations. In non-level and totally essen-
tial NTU-games our proposed vectors of aspirations have the following three
properties: (1) Giving players their maximum aspirations will always exhaust
all possible gains from cooperation. (2) The vector of maximum aspirations is
component-wise larger than the vector of minimal aspirations. (3) The mini-
mum aspiration obtained in this rather indirect way coincides with the vector
of individually rational payo¤s. We find this last property interesting because
it means that we have as a result that the minimum aspiration for each player
in a game coincides with what he can obtain without any cooperation. It seems
to us that this property may also be a good indication that the proposed maxi-
mum aspiration is meaningful.

The paper is organized as follows. Section 2 is a preliminary section which
gives the main notation and concepts. Section 3 contains the definition of the
Chi-compromise value; Propositions 1 and 2 and Corollary 1 which establish
that properties (1), (2), and (3) above hold for non-level and totally essential
NTU-games; the demonstration that the Chi-compromise value exists for all
non-level and totally essential NTU-games; and finally, a number of examples
which illustrate the new value. Section 4 provides two characterizations of
the Chi-compromise value using the following axioms: Pareto Optimality, Co-
variance, Symmetry, and Restricted Monotonicity (or Strong Symmetry in-
stead of Symmetry and Restricted Monotonicity). Section 5 proposes (as a
generalization of Moulin (1984)’s implementation of the Kalai-Smorodinsky
solution for pure bargaining problems) a non-cooperative extensive-form game
whose subgame perfect equilibrium payo¤s coincide with the Chi-compromise
value. Section 6 proposes a di¤erent compromise value based on applying our
Chi-value for TU-games to the characteristic function obtained by the classi-
cal l-transfer approach. Section 7 concludes by comparing, briefly, our value
with other well-known NTU-values.

2 Preliminaries

Players are the elements of a finite set N ¼ f1; . . . ; ng where nb 2. A non-
empty subset of players is called a coalition. We denote by s the number of
players of coalition S and, abusing notation, by i the singleton set fig.

A (cooperative) game with non-transferable utility (NTU-game) is an or-
dered pair ðN;VÞ where N ¼ f1; . . . ; ng is the set of players and V is a map-
ping, called the characteristic function, which assigns to each non-empty co-
alition S a non-empty subset of RS. By convenience, we set VðqÞ ¼ q. The
set VðSÞ is interpreted as the collection of payo¤s or utilities that members
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of S can reach by cooperating among themselves. We will concentrate only
on games with non-transferable utility having the standard properties that
for each coalition S, the set VðSÞ is closed, non-empty, and comprehensive
(i.e., x A VðSÞ and ya x imply y A VðSÞ). Given x; y A RK , ya x means
yi a xi for all i A K while y < x means yi < xi for all i A K . Given x A RK

and a coalition SJK , denote by xS the restriction of x to the coordinates
corresponding to the members of S; i.e., xS ¼ ðxiÞi AS. For each player i A N

there exists a payo¤ wi A R, called the individually rational payo¤, such
that VðiÞ ¼ fx A R j xawig. Also, for each coalition S, the set VðSÞþ :¼
fx A VðSÞ j xbwSg is bounded. We denote by VN the class of games with
non-transferable utility with set of players N.

We will often use the following properties of games with non-transferable
utility.

Definition 1. A game ðN;VÞ is non-level if for each coalition S we have that for
all x; y A VðSÞþ such that yb xbwS and x0 y there exists z A VðSÞ with the
property that z > x.

Definition 2. A game ðN;VÞ is totally essential if wS A VðSÞ for all SJN.

We denote by CN the subclass of non-level and totally essential games with
non-transferable utility.

A solution on a subclass of games GN JVN is a function j : GN ! RN

which assigns to each ðN;VÞ A GN a vector jðN;VÞ A VðNÞ.
We will consider, and use as references, two special subclasses of games. A

game ðN;VÞ has transferable utility if there is a real-valued function v such
that VðSÞ ¼ fx A RS j

P
i AS xi a vðSÞg; namely, each coalition S can achieve

a maximum level of utility vðSÞ which can be distributed amongst its members
in all possible ways. We denote by vN the subclass of games with transferable
utility with set of players N. A generic game with transferable utility will be
denoted by ðN; vÞ. A game ðN;VÞ is a bargaining game if it is totally essential
and VðSÞ ¼ fx A RS j xawSg for every coalition S0N; namely, there are
gains from cooperation and they come only from unanimous agreements. We
denote by BN the subclass of bargaining games with set of players N. A ge-
neric bargaining game will be denoted by ðw;BÞ, where B stands for the set
VðNÞ and w represents the disagreement point.

We are specially interested in extending two compromise solutions of these
subclasses to games with non-transferable utility. The first one is the Kalai-
Smorodinsky solution (Kalai and Smorodinsky (1975)) on bargaining games
which represents an e‰cient compromise between the maximal aspiration of
each player, compatible with individual rationality of the others, and the dis-
agreement point. Formally, given ðw;BÞ A BN define the Kalai-Smorodinsky
solution, denoted by KSðw;BÞ, as follows: for all i A N

KSiðw;BÞ ¼ lMKS
i ðw;BÞ þ ð1 	 lÞwi;

where MKS
i ðw;BÞ ¼ maxfxi A R j ðxi; xNniÞ A B and ðxi; xNniÞbwg and l A

½0; 1� is such that KSðw;BÞ A PðBÞ. PðBÞ denotes the Pareto frontier of B.

In general, given a set AJRK , the Pareto frontier of A is the set PðAÞ ¼
fx A A j 6 by A A satisfying yb x; y0 xg and the weak Pareto frontier of A is
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the set WPðAÞ ¼ fx A A j 6 by A A satisfying y > xg. By convenience, we set
PðqÞ ¼ q and WPðqÞ ¼ q. Given a set A and a vector y we say that
y is undominated for A if 6 bx A A such that xb y and x0 y. Obviously, if
y A VðSÞnPðVðSÞÞ then y is dominated for VðSÞ.

The second one is the Chi value (Bergantiños and Massó (1996)) on the
subclass of games with transferable utility. It is also based on selecting an ef-
ficient compromise between maximal and minimal aspirations of players. In
this case, the maximal aspiration of a player is his largest marginal contribu-
tion while his minimal aspiration is the largest remainder he can obtain after
conceding to the other players their maximal aspiration. Formally, let ðN; vÞ
be a game with transferable utility. For each i A N, define player i ’s maximum
aspiration in the game as

M
w
i ðN; vÞ ¼ max

SJN; i AS
fvðSÞ 	 vðSniÞg:

Given the vector M wðN; vÞ define player i ’s minimum aspiration in the game
as

m
w
i ðN; vÞ ¼ max

SJN; i AS
vðSÞ 	

X
j ASni

M
w
j ðN; vÞ

8<
:

9=
;:

Define the Chi value on vN , denoted by wðN; vÞ, as the unique e‰cient vector
in the lineal segment having as extreme points mwðN; vÞ and M wðN; vÞ; that is,

wðN; vÞ ¼ gM wðN; vÞ þ ð1 	 gÞmwðN; vÞ;

where g A ½0; 1� is such that
P

i AN wiðN; vÞ ¼ vðNÞ. Bergantiños and Massó
(1996) showed that the Chi value exists in the class of essential games with
transferable utility (i.e.;

P
i AN vðiÞa vðNÞ).

3 The Chi-compromise value

In this section we define and study a compromise value for NTU-games. Let
ðN;VÞ be a game in VN . For each i A N define player i ’s maximum aspiration
in the game as

M
w
i ðN;VÞ ¼ max

SJN; i AS
ft A R j ðt; xÞ A VðSÞþ; x A PðVðSniÞÞg:

Remark 1. M
w
i ðN;VÞbwi (take S ¼ fig and t ¼ wi).

We also have that M
w
i ðN;VÞ < þy because VðSÞþ is compact and

PðVðSniÞÞ is closed. Therefore, M
w
i ðN;VÞ is well defined for all ðN;VÞ in VN .

Given the vector M wðN;VÞ define player i ’s minimal aspiration in the game
as

m
w
i ðN;VÞ ¼ max

SJN; i AS
ft A R j ðt;M w

SniðN;VÞÞ A VðSÞg:

Remark 2. m
w
i ðN;VÞbwi (again, take S ¼ fig and t ¼ wi).
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Notice that for each S containing i, the projection of VðSÞ on i ’s coordinate
is closed and bounded above. Therefore the maximum defining m

w
i ðN;VÞ does

exist for all ðN;VÞ in VN .
From now on, and when this does not lead to confusion, we will omit the

reference to the game ðN;VÞ to denote the aspiration vectors mw and M w.
Propositions 1 and 2 and Corollary 1 below state that the three important

properties of the vectors of aspirations already explained in the Introduction
hold for non-level and totally essential NTU-games. Proposition 1 says that,
for every coalition S, the vector of maximum aspirations is undominated for
VðSÞ.

Proposition 1. For all ðN;VÞ A CN and all SJN

M
w
S B VðSÞnPðVðSÞÞ:

Proof: If S has only one player the result holds. Suppose it is true when S has
at most p	 1 players; we will show that the statement holds in the case of
coalitions with p players.

In order to get a contradiction assume that S has p players and M
w
S A

VðSÞnPðVðSÞÞ. Then, there exists yS A VðSÞ such that yS bM
w
S and i A S

with yi > M
w
i . As M w

Sni B VðSniÞnPðVðSniÞÞ (by the induction hypothesis) and
ðN;VÞ is non-level we can find xSni A PðVðSniÞÞ such that xSni aM

w
Sni. Then,

by comprehensiveness, ðyi; xSniÞ A VðSÞ and therefore M
w
i b yi > M

w
i . 9

Proposition 2 below states that, for non-level and totally essential NTU-
games, the vector of minimal aspirations coincides, as it should, with the vec-
tor of individually rational payo¤s. But, again, notice that mw is obtained
endogenously as the maximum reminder after giving to other players in the
coalition their maximal aspirations. We interpret this property as an indica-
tion that our definition of maximal aspiration is sensible.

Proposition 2. For all ðN;VÞ A CN,

mw ¼ w:

Proof: From Remark 2 we already know that m
w
i bwi. To see that m

w
i awi it

will be su‰cient to show that tawi for all t A R and all SJN such that i A S
and ðt;M w

SniÞ A VðSÞ. The proof is by induction on the number of players in

the coalition S.
Assume that S ¼ fi; jg. If ðt;M w

j Þ A Vðfi; jgÞ and t > wi then, by com-

prehensiveness of the game, ðx;M w
j Þ A Vðfi; jgÞ for all xa t, which is im-

possible by non-levelness of the game and the definition of M
w
j .

Assuming that the result is true if S contains pb 2 players (the induction
hypothesis), we will show that it is true for all coalitions with pþ 1 players.
Let S ¼ fi1; . . . ; ip; ig be any set with pþ 1 players containing i and assume

that ðt;M w
SniÞ A VðSÞ.

First we prove that if t > wi and ðt;M w
SniÞ A VðSÞ then ðt;M w

i1
; . . . ;M w

ip	1
Þ A

VðSnipÞ. Assume that ðt;M w
i1
; . . . ;M w

ip	1
Þ B VðSnipÞ. As t > wi; M

w
j bwj for

any j A N; and V is totally essential we can find x A PðVðSnipÞÞ such that
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wSnip a xa ðt;M w
Snfi; ipgÞ. Therefore, ðx;M w

ip
Þa ðt;M w

SniÞ A VðSÞ implying, by

non-levelness of the game, that we can find a vector y A VðSÞþ with the
property that y > ðx;M w

ip
Þ. Therefore, yip > M

w
ip

which contradicts the defini-
tion of M w

ip
.

Now tawi would follow by the induction hypothesis. 9

Example 1 below shows that the conclusion of Proposition 2 does not hold
for level NTU-games.

Example 1. Let ðN;VÞ be the NTU-game where N ¼ f1; 2g, w1 ¼ w2 ¼ 0, and

VðNÞ ¼ compðconvðfð1; 1Þ; ð2; 0ÞgÞÞ. In general, if AJRK , compðAÞ denotes
the comprehensive hull of A (i.e., the smallest comprehensive set containing
A) and convðAÞ the convex hull of A. The vector of maximum aspirations is
M wðN;VÞ ¼ ð2; 1Þ and the vector of minimum aspirations is mwðN;VÞ ¼ ð1; 0Þ
which for player 1 is strictly larger than w1 ¼ 0.

Corollary 1 explicitly states that for non-level and totally essential NTU-
games the maximum aspiration is larger or equal to the minimum aspiration.

Corollary 1. For all ðN;VÞ A CN,

mw
aM w:

Proof: It follows immediately from Proposition 2 and Remark 1. 9

We can now define the Chi-compromise value as well as state the most im-
portant result of the paper which identifies a large class of games (non-level
and totally essential) in which the Chi-compromise value does exist.

Definition 3. The Chi-compromise value, denoted by w, is the unique e‰cient
vector in the lineal segment having as extreme points mw and M w; that is, for all
ðN;VÞ A VN,

wðN;VÞ ¼ gM wðN;VÞ þ ð1 	 gÞmwðN;VÞ;

where g is the largest number in ½0; 1� satisfying wðN;VÞ A PðVðNÞÞ.

Theorem 1. For all ðN;VÞ A CN there exists wðN;VÞ.

Proof: It follows by combining Propositions 1 and 2, and Corollary 1. 9

Remark 3. It is straightforward to show that the Chi-compromise value co-
incides with the Kalai-Smorodinsky solution in bargaining problems and with
the Chi value in TU-games.

We now compare more specifically our value with three compromise val-
ues in the literature: the Compromise value of Borm et al. (1992), the MC-
value of Otten et al. (1998), and the W-value of Bergantiños et al. (2000).

Given ðN;VÞ A VN , the Compromise value is defined as the unique vector
on the lineal segment between MCðN;VÞ and mCðN;VÞ which lies in VðNÞ
and is closest to MCðN;VÞ, where for any i A N
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MC
i ðN;VÞ ¼ sup t A R

				 ðt; xÞ A VðNÞ; x B VðNniÞnWPðVðNniÞÞ;
and xbwNni


 �

and

mC
i ðN;VÞ ¼ max

SJN; i AS
t A R

				 bx A RSni; ðt; xÞ A VðSÞ;
and x > MC

SniðN;VÞ

( )
:

The Compromise value exists for the class of compromise admissible NTU-
games, defined as,

CAN ¼ ðN;VÞ A VN

				 mCðN;VÞaMCðN;VÞ;mCðN;VÞ A VðNÞ;
and MCðN;VÞ B VðNÞnWPðVðNÞÞ


 �
:

Borm et al. (1992) proved that for any ðN;VÞ A VN and any i A N,
mC

i ðN;VÞbwi. Suppose that ðN;VÞ is non-level and hence PðVðSÞÞ ¼
WPðVðSÞÞ for all SJN. Then, mC

i ðN;VÞbm
w
i ðN;VÞ. If ðt; xÞ A VðNÞ,

x B VðNniÞnWPðVðNniÞÞ, and xbwNni, by non-levelness, we can find x 0 A
PðVðNniÞÞ such that x 0 a x and hence ðt; x 0Þ A VðNÞþ. Now, it is easy to
conclude that MC

i ðN;VÞaM
w
i ðN;VÞ. Then, in the class of non-level NTU-

games, CAN HCN ; that is, if the Compromise value exists then the Chi-
compromise value also exists.

Note that if in the definition of M
w
i we change x A PðVðSniÞÞ to x A WP �

ðVðSniÞÞ (denote this alternative maximum aspiration by M
w

i ) then it is
straightforward to check that M

w

i ðN;VÞbMC
i ðN;VÞ for all NTU-games.

Therefore, the corresponding Chi-compromise value using the M w vector as
maximum aspirations is defined whenever the Compromise value exists. How-
ever, it seems to us that it is more appropriate to obtain the maximum aspi-
ration of a player i in a coalition S as the remainder assuming that the mem-
bers of coalition Sni exhaust all their possible gains of cooperation by reaching
Pareto (and not weakly Pareto) agreements.

The MC-value of Otten et al. (1998) is defined as the e‰cient outcome ly-
ing on the lineal segment between the vector of individually rational payo¤s
and a vector of maximum aspiration obtained by giving to each player the
sum of all his marginal contributions in all possible orderings of the set of
players. Since in many cases each component of this upper value vector may
be unfeasible it seems di‰cult to justify it as a vector of maximal aspirations.
Otten et al. (1998) showed that the MC-value is well defined in the class of
monotonic, zero-normalized NTU-games, which is unrelated to the class of
non-level and totally essential NTU-games.

The W-value of Bergantiños et al. (2000) is defined as the e‰cient outcome
lying on the lineal segment between the vector of individually rational payo¤s
and the vector of maximum aspirations MWðN;VÞ:

The vector of maximum aspirations and the W-value are defined by us-
ing induction arguments. When n ¼ 2 the vector of maximum aspirations
MWðN;VÞ is defined as in the Kalai-Smorodinsky bargaining solution ðMKSÞ.
Then, both solutions coincide when n ¼ 2.

Suppose now that we have defined MW and W when there are at most n	 1
players.
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Given SHN, aiðSÞ ¼ maxft A R j ðt;WðSni;V jSniÞÞ A VðSÞg where V jSni
denotes the restriction of V to Sni:

The maximum aspiration of player i in the game ðN;VÞ is defined as
MW

i ðN;VÞ ¼ max
SHN; i AS

aiðSÞ:

Bergantiños et al. (2000) prove that the W-value exists for all non-level and
superadditive NTU-games. ðN;VÞ A VN is superadditive if for all S;T HN,
SXT ¼ q then VðSÞ � VðTÞHVðSWTÞ: It is easy to check that the class
of non-level and totally essential NTU-games, where the Chi-compromise
value exists, is larger that the class of non-level and superadditive NTU-games,
where the W-value exists.

We end this section by calculating the Chi-compromise value in three well-
known examples of NTU-games and comparing it with other proposed values.

Example 2 (Roth (1980)). Let ðN;VÞ be an NTU-game such that N ¼ f1; 2; 3g,

VðfigÞ ¼ fxi A Rfig j xi a 0g; for i A N;

Vðf1; 2gÞ ¼ fðx1; x2Þ A Rf1;2g j ðx1; x2Þa ð0:5; 0:5Þg;

Vðf1; 3gÞ ¼ fðx1; x3Þ A Rf1;3g j ðx1; x3Þa ð0:25; 0:75Þg;

Vðf2; 3gÞ ¼ fðx2; x3Þ A Rf2;3g j ðx2; x3Þa ð0:25; 0:75Þg;

and

VðNÞ ¼ fx A RN j by A convfð0:5; 0:5; 0Þ; ð0:25; 0; 0:75Þ; ð0; 0:25; 0:75Þg;

xa yg:

For this example the Shapley-NTU value (Aumann (1985)) is (0.333, 0.333,
0.333), the Harsanyi-NTU value (Harsanyi (1963)) is (0.416, 0.416, 0.166), the
Consistent value (Maschler and Owen (1989, 1992)) is (0.25, 0.25, 0.5), the
MC-value coincides with the Shapley-NTU value, the Compromise value is
(0.5, 0.5, 0), and the W-value is (0.286, 0.286, 0.428).

Although the game does not satisfy non-levelness we can compute the Chi-
compromise value, which is ð0:5; 0:5; 0Þ, the unique Core outcome.

Example 3 (Shafer (1980)). We present the modification of Shafer (1980)’s ex-
ample as it was used in Hart and Kurz (1983). Consider the following exchange
economy with three agents and two commodities. The initial commodity bun-
dles of agents 1, 2, and 3 are

o1 ¼ ð1 	 e; 0Þ; o2 ¼ ð0; 1 	 eÞ; and o3 ¼ ðe; eÞ;

where 0 a ea 1
5, and their respective utility functions, ui, are given by

u1ðy; zÞ ¼ u2ðy; zÞ ¼ minfy; zg; and u3ðy; zÞ ¼
yþ z

2
:
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Following Shapley and Shubik (1969) the corresponding NTU-game ðN;VÞ is
given by:

VðfigÞ ¼ fxi A Rfig j xi a 0g; for i ¼ 1; 2;

Vðf3gÞ ¼ fx3 A Rf3g j x3 a eg;

Vðf1; 2gÞ ¼ fðx1; x2Þ A Rf1;2g j ðx1; x2Þa ð1 	 e; 1 	 eÞ; x1 þ x2 a 1 	 eg;

Vðf1; 3gÞ ¼ ðx1; x3Þ A Rf1;3g j ðx1; x3Þa e;
1 þ e

2

� �
; x1 þ x3 a

1 þ e

2


 �
;

Vðf2; 3gÞ ¼ ðx2; x3Þ A Rf2;3g j ðx2; x3Þa e;
1 þ e

2

� �
; x2 þ x3 a

1 þ e

2


 �
;

and

VðNÞ ¼ fx A RN j ðx1; x2; x3Þa ð1; 1; 1Þ; x1 þ x2 þ x3 a 1g:

In this game the Shapley-NTU value is
5 	 5e

12
;
5 	 5e

12
;
1 þ 5e

6

� �
, the

Harsanyi-NTU value is
3 	 5e

6
;
3 	 5e

6
;
5e

3

� �
, the MC-value coincides with

the Shapley-NTU value, the Compromise value is
1 	 e

2
;
1 	 e

2
; e

� �
; and the

W-value is
2 	 2e

5
;
2 	 2e

5
;
1 þ 4e

5

� �
.

The Chi-compromise value is
2 	 2e

5 	 5e
;
2 	 2e

5 	 5e
;

1 	 e

5 	 5e

� �
.

Example 4 (Owen (1972)). Let ðN;VÞ be an NTU-game such that N ¼
f1; 2; 3g;

VðfigÞ ¼ fxi A Rfig j xi a 0g; for i A N;

Vðf1; 2gÞ ¼ fðx1; x2Þ A Rf1;2g j x1 þ 4x2 a 100; x1 a 100; x2 a 25g;

Vðf1; 3gÞ ¼ fðx1; x3Þ A Rf1;3g j x1 a 0; x3 a 0g;

Vðf2; 3gÞ ¼ fðx2; x3Þ A Rf2;3g j x2 a 0; x3 a 0g;

and

VðNÞ ¼ x A RN j
X
i AN

xia100; Ei A N; xi a100; Ei; j A N; xi þxj a100

( )
:

In this example the Shapley-NTU value is ð50; 50; 0Þ, the Harsanyi-NTU
value is ð40; 40; 20Þ, the Consistent value is ð50; 37:5; 12:5Þ, the MC-value is
ð50; 33:33; 16:67Þ, the Compromise value is ð36:36; 36:36; 27:27Þ; and the W-
value is ð42:1; 42:1; 15:7Þ.

The Chi-compromise value is ð36:36; 36:36; 27:27Þ.
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4 Characterizations of the Chi-compromise value

In this section we study several properties of the Chi-compromise value. More-
over two characterizations of the Chi-compromise value are provided. To do
that, let GN JVN be an arbitrary subclass of NTU-games and let j be a solu-
tion on GN .

Pareto Optimality. The solution j satisfies Pareto Optimality on GN if
jðN;VÞ A PðVðNÞÞ for all ðN;VÞ A GN .

Covariance. The solution j satisfies Covariance on GN if jðN;WÞ ¼ a � j �
ðN;VÞ þ b whenever ðN;VÞ; ðN;WÞ A GN are such that for all SJN, WðSÞ ¼
aS � VðSÞ þ bS, where aS � VðSÞ ¼ fðaixiÞi AS j xS A VðSÞg, a A RN , a > 0 and

b A RN .

Players i and j have a symmetric position in a game ðN;VÞ if (1) for
SJNnfi; jg, x A VðSW iÞ i¤ y A VðSW jÞ when yS ¼ xS and yj ¼ xi and (2)
for SK fi; jg; x A S i¤ y A S when ySnfi; jg ¼ xSnfi; jg; yi ¼ xj, and yj ¼ xi.

Symmetry. The solution j satisfies Symmetry on GN if jiðN;VÞ ¼ jjðN;VÞ
whenever i and j have a symmetric position in the game ðN;VÞ A GN .

Strong Symmetry. The solution j satisfies Strong Symmetry on GN

if jiðN;VÞ ¼ jjðN;VÞ whenever ðN;VÞ A GN is such that wi ¼ wj and

M
w
i ðN;VÞ ¼ M

w
j ðN;VÞ.

Restricted Monotonicity. The solution j satisfies Restricted Monotonicity
on GN if jðN;VÞa jðN;V 0Þ whenever ðN;VÞ; ðN;V 0Þ A GN are such that

VðNÞJV 0ðNÞ, w ¼ w 0, and M wðN;VÞ ¼ M wðN;V 0Þ.

Proposition 3. The Chi-compromise value satisfies Pareto Optimality, Covari-
ance, Symmetry, Strong Symmetry, and Restricted Monotonicity on the class
CN of non-level and totally essential games with non-transferable utility.

Proof: It is straightforward to check that the Chi-compromise value satisfies
these five properties. 9

Theorem 2. The Chi-compromise value is the unique solution on CN satisfying
Pareto Optimality, Covariance, Symmetry, and Restricted Monotonicity.

Proof: We have just established in Proposition 3 that the Chi-compromise
value satisfies the four properties.

We now prove uniqueness. Suppose F is another solution satisfying the
four properties. Assume that w B PðVðNÞÞ; otherwise the result is trivial.

First we prove that if ðN;VÞ A CN and w B PðVðNÞÞ then for all i A N,
M

w
i ðN;VÞ > wi: As w A VðNÞnPðVðNÞÞ and ðN;VÞ satisfies non-levelness

there exists x A VðNÞ, x > w. Given i A N, as VðfigÞ ¼ fx A Rfig j xawig we
can find SHN and y A VðSÞþ such that i A S, VðSniÞþ ¼ wSni; and y > wS.
This means that M w

i ðN;VÞ > wi.
By Covariance it su‰ces to prove that wðN;VÞ ¼ F ðN;VÞ when, for all

i A N, wi ¼ 0 and M
w
i ðN;VÞ ¼ 1:
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Clearly, for all i A N, the vector ci A RN defined by ci
j ¼ wjðN;VÞ þ e if

i ¼ j and ci
j ¼ 0 if j0 i belongs to VðNÞ for e su‰ciently small. The non-

levelness ensures that e is strictly positive. Note that for all i A N, wiðN;VÞa 1.
Let ðN;WÞ be such that for all i A N

WðfigÞ ¼ fx A Rfig j xa 0g;

for all SHN such that 2 a sa n	 1

WðSÞ ¼ comp xS A RS j Ei A S; 0 a xi a 1; and
X
i AS

xi a 1

( )
;

and

WðNÞ ¼ compðconvðfci A RN j i A NgW wðN;VÞÞÞXVðNÞ:

Then ðN;WÞ A CN , M w
i ðN;WÞ ¼ 1 for all i A N, and wðN;VÞ ¼ wðN;WÞ. By

symmetry for all i; j A N, FiðN;WÞ ¼ FjðN;WÞ. Note that even though WðNÞ
is not necessarily a symmetric set, ðN;WÞ is a symmetric game. Therefore
by Pareto Optimality, FðN;WÞ ¼ wðN;WÞ. By Restricted Monotonicity
F ðN;WÞaF ðN;VÞ, which implies wðN;VÞaF ðN;VÞ. But since w satisfies
Pareto Optimality we can conclude that wðN;VÞ ¼ FðN;VÞ. 9

Theorem 3. The Chi-compromise value is the unique solution on CN satisfying
Pareto Optimality, Covariance, and Strong Symmetry.

Proof: Proposition 3 establishes that the Chi-compromise value satisfies these
properties.

We now prove uniqueness. Suppose F is another solution satisfying these
properties. Using similar arguments to those already used in the proof of
Theorem 2 we can assume that for all i A N, M

w
i ðN;VÞ > wi: By Covariance

it su‰ces to prove that wðN;VÞ ¼ FðN;VÞ when, for all i A N, wi ¼ 0 and
M

w
i ðN;VÞ ¼ 1.
By Strong Symmetry, for all i; j A N; FiðN;VÞ ¼ FjðN;VÞ and wiðN;VÞ ¼

wjðN;VÞ. By Pareto Optimality, F ðN;VÞ ¼ wðN;VÞ. 9

Note that all axioms used in both characterizations are independent. The
egalitarian solution defined by Kalai and Samet (1985) satisfies all five prop-
erties except Covariance. The solution f 1 defined as f 1ðN;VÞ ¼ w for all
ðN;VÞ A CN satisfies all properties except Pareto Optimality. The solution f 2

defined as the Shapley value when ðN;VÞ is a totally essential TU-game and
the Chi-compromise value in the rest of the class CN satisfies all properties ex-
cept Strong Symmetry and Restricted Monotonicity. The solution f 3 defined
as f 3

i ðN;VÞ ¼ wi for i0 1 and f 3
1 ðN;VÞ ¼ maxft A R j ðt;wNn1Þ A VðNÞg,

satisfies all properties except Symmetry.
These axiomatic characterizations can be extended in the following way.

Theorem 2 is also true for the class of NTU-games for which the Chi-
compromise value exists and the condition of non-levelness is satisfied only for
the set VðNÞþ. Theorem 3 is also true for the class of NTU-games where the
Chi-compromise value exists.
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Moreover, notice that in both characterizations the sets VðSÞ need not be
convex. While this is also possible in the characterization of the MC-value it is
not the case in the characterization of the Compromise value where the set
VðNÞ has to be convex.

5 Implementation of the w-value

Following the Nash program, there is a long tradition of justifying axiomatic
bargaining solutions by means of equilibria of a non-cooperative game asso-
ciated to the original bargaining problem. Moulin (1984) exhibits an extensive-
form game whose subgame perfect equilibria induce the Kalai-Smorodinsky
solution. Here, and following the procedure used by Hart and Mas-Colell
(1996) to obtain the Consistent value by extending the non-cooperative imple-
mentation of the Nash bargaining solution to NTU-games (which also co-
incides with the Shapley value for TU-games), we extend Moulin’s imple-
mentation of the Kalai-Smorodinsky solution for bargaining problems to
NTU-games (which also coincides with the Chi value for TU-games).

Given a NTU-game ðN;VÞ, we define the non-cooperative n-person game
GðN;VÞ as follows:

. Round 0. Each player i makes a bid pi, where 0 < pi a 1, and they are re-
numbered in decreasing order of their bids, p1 b p2 b � � � b pn (players
with tied bids are ordered randomly among themselves).. Round 1. Player 1 proposes a payo¤ vector x ¼ ðx1; . . . ; xnÞ A VðNÞ to the
approval of player n, who can either accept or reject it. If player n accepts x
the game proceeds to round 2.
If player n rejects x then he must choose a pair ðSn; xnÞ, where Sn HN;
n A Sn; and xn A VðSnÞ. Player n proposes to the other players of Sn to co-
operate with him to obtain a payo¤ of xn. Players in Sn may accept or reject
xn but they are forced to accept it if there is no a payo¤ vector y A VðSnnnÞ
such that y > xn

S nnn. There are two cases to be considered:

1. If all players in Snnn accept xn then a lottery is held in which, with prob-
ability p1 the agreement achieved by the players of Sn is implemented
(that is, every player j A Sn obtains xn

j , except player 1, if 1 A Sn, who
receives w1). The exceptional treatment to player 1 (the proposer) is to
dissuade him from putting forward unreasonable proposals that make
unanimous agreement impossible. Players of NnSn return to round 0 and
continue to bargain among themselves. With probability 1 	 p1 the bar-
gaining procedure finishes and every player i A N obtains wi.

2. If any player of Sn rejects xn then player n is removed from the bargaining
procedure; i.e., player n obtains wn. Let RðnÞ be the set of players who
rejected ðSn; xnÞ and in the player of this set with the largest index. Player
in must propose a payo¤ vector z A VðSnnnÞ such that z > xn

S nnn, which
exists because in rejected xn. With probability p1 the payo¤ vector z is
implemented (that is, every player j A Snnn obtains zj) and the players of
NnSn return to round 0 and continue to bargain among themselves. With
probability 1 	 p1 the bargaining procedure finishes and every player
i A N obtains wi.
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. Round 2. Player 1 proposes the payo¤ vector x ¼ ðx1; . . . ; xnÞ to the approval
of player n	 1, who can either accept it or reject it. If he accepts it the game
proceeds to round 3.
If he rejects he must make a countero¤er ðSn	1; xn	1Þ, where n	 1 A Sn	1

and xn	1 A VðSn	1Þ, and the game proceeds as in the previous round re-
placing the role of player n by player n	 1.. Rounds 3; . . . ; n	 1 are similar to rounds 1 and 2 but now considering
players n	 2; . . . ; 2 instead of players n and n	 1.

Remark 4. Since the number of players is finite, the game GðN;VÞ terminates
in a finite number of steps.

Remark 5. Round 0 is the same than Round 0 in Moulin (1984). Rounds
1; 2; . . . ; n	 1 are similar to rounds 1; 2; . . . ; n	 1 of Moulin (1984). The dif-
ference is that in Moulin (1984), if some player rejects the initial o¤er he must
make a countero¤er to the rest of the players, who can reject or accept it. If
somebody rejects it the disagreement point is enforced. However, in our game
the player who rejected the initial o¤er can make a proposal to some smaller
coalition. This modification is necessary because in NTU-games partial agree-
ments are also possible. Moreover, when we restrict our procedure to a non-
cooperative game induced by a bargaining game it coincides, basically, with
Moulin (1984). The only di¤erence is that in Moulin (1984) when a player
makes a counterproposal the rest of the players always can reject it (in such a
case, all receive the disagreement point). However, in our game players can
not reject an o¤er which gives them at least the disagreement point.

Remark 6. Bergantiños et al. (2000) also gives an implementation of the W-
value using a non-cooperative game which generalizes Moulin (1984). We
now compare the non-cooperative game defined in this paper and the one
described in Bergantiños et al. (2000). Round 0 is the same in both non-
cooperative games. Round 1 is di¤erent in two aspects. First, in our case
players in Sn are forced to accept xn if there is no a payo¤ vector y A VðSnnnÞ
such that y > xn

S nnn; in Bergantiños et al. (2000) players in Sn can reject any

o¤er. Second, if xn is rejected, in our non-cooperative game player in must
propose a payo¤ vector z A VðSnnnÞ such that z > xn

S nnn, with probability p1

the payo¤ vector z is implemented and with probability 1 	 p1 every player
i A Sn obtains wi; in Bergantiños et al. (2000) if xn is rejected then with prob-
ability p1 players in Snnn return to Round 0 and continue to bargain among
themselves and with probability 1 	 p1 every player i A Sn obtains wi. The
same two di¤erences (adjusted in the natural way) also apply to the remaining
rounds 2; . . . ; n	 1.

We now present the main result of this section which says that the non-
cooperative game described above implements in subgame perfect Nash
equilibrium strategies the Chi-compromise value.

Theorem 4. Let ðN;VÞ be a non-level and totally essential NTU-game. Then,
the non-cooperative game GðN;VÞ has subgame perfect Nash equilibria
(SPNE). Moreover, the payo¤ received by the players in all of them is wðN;VÞ.

Proof: Let ðN;VÞ be a non-level and totally essential NTU-game. The proof
is by induction on the number of players.
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Case n ¼ 2: It is easy to check that the set of SPNE of Gðf1; 2g;VÞ coincides
with the set of SPNE of the game of auctioning fractions of dictatorship,
Moulin (1984), applied to the bargaining problem ððw1;w2Þ;Vðf1; 2gÞÞ. Then,
by Moulin (1984), this set is non-empty and the payo¤ received by the two
players in all of these equilibria is the payo¤ vector KSððw1;w2Þ;Vðf1; 2gÞÞ,
which is equal to wðf1; 2g;VÞ. Hence, the statement of Theorem 4 holds when-
ever n ¼ 2.

Induction hypothesis: Assume that the statement of Theorem 4 holds when
there are strictly less than n players.

Now, the proof that the statement of Theorem 4 is also true when there are
n players is based on Lemmas 1 and 2 below.

Lemma 1. The set of SPNE of GðN;VÞ is non-empty.

Proof of Lemma 1: Let p A ð0; 1� be such that wðN;VÞ ¼ pM wðN;VÞ þ ð1 	 pÞ �
mwðN;VÞ. The proof will consist of exhibiting a SPNE strategy profile s.

Definition of s: In round 0 each player i submits a bid pi equal to p. The
proposer, now player 1, proposes the vector x ¼ p1M

wðN;VÞ þ ð1 	 p1Þmw �
ðN;VÞ. Every player i0 1 accepts the proposal x of player 1 if and only if
xj b p1M

w
j ðN;VÞ þ ð1 	 p1Þmw

j ðN;VÞ for all j0 1. After rejecting x, player i

would propose ðS i; xiÞ, where S i is the coalition that maximizes the reminder
in the definition of M

w
i ðN;VÞ; i.e., xi

S ini A PðVðS iniÞÞ and xi
i ¼ M

w
i ðN;VÞ.

Players in S ini will accept any o¤er y A VðS iÞ if and only if yS ini A PðVðS iniÞÞ.
If the procedure goes back to Round 0 then, there is, at most, n	 1 players.
Hence, define s in these subgames as the behavior prescribed by an arbitrary
SPNE strategy of the game with at most n	 1 players, whose existence is
guaranteed by the induction hypothesis.

Notice that the play prescribed by s is that the selected player (all of them
with equal probability) proposes wðN;VÞ and the rest accept it. Hence, the ex-
pected payo¤ induced by s in GðN;VÞ is the Chi-compromise value of ðN;VÞ.

To prove that s is an SPNE we have to show that no player, in any of its
information sets, has incentives to deviate from s.

First, if the game goes back to Round 0, by the definition of s, no player
has a profitable deviation.

Second, assume player i rejected the initial o¤er of player 1 and proposed,
according with s, ðS i; xiÞ. Then, all players in S ini are forced to accept it

since there is no z A VðS iniÞ such that zj > xi
j for all j A S ini because xi

S ini A
PðVðS iniÞÞ:

Third, player i has no profitable deviation from proposing ðS i; xiÞ, which
is what specifies s after he rejects an initial o¤er. To see it, suppose that player

i proposes any ðŜS i; x̂xiÞ with the property that x̂xi

ŜS ini A VðŜS iniÞnPðVðŜS iniÞÞ.
Then, at least one player in ŜS ini will reject it and player i will get wi. There-
fore, if player i wants to obtain more than wi he must o¤er an acceptable

proposal; that is, a pair ðS i; xiÞ with the property that xi

S ini A PðVðS iniÞÞ,
otherwise, at least one player will reject it. Among all of these pairs, to o¤er
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the pair ðS i; xiÞ specified by s is the best, which gives to player i the payo¤ of

M
w
i ðN;VÞ with probability p and wi with probability 1 	 p; i.e., wiðN;VÞ.
As a consequence of the last two arguments (second and third) we can

conclude that no player has incentives to reject the initial proposal wðN;VÞ.
Fourth, we show that player 1 does not get a strictly higher payo¤ by

proposing x0 wðN;VÞ. Suppose that xNn1 b wNn1ðN;VÞ, then the rest of the
players will accept x; hence, player 1 gets x1 a w1ðN;VÞ because x A VðNÞ
and wðN;VÞ A PðVðNÞÞ. Suppose now that there exists i0 1 with xi < wi �
ðN;VÞ. Then, x will be rejected by player n, who will propose, according to s,
the pair ðSn; xnÞ, which will be accepted by the members of Sn since there is

no y A VðSnnnÞ such that y > xn
S nnn. Now we distinguish two cases:

. If 1 A Sn player 1 gets w1, which is not larger than w1ðN;VÞ.. If 1 A NnSn player 1 gets, by the induction hypothesis, w1ðNnSn;V jNnS nÞ
with probability p and w1 with probability 1 	 p. Taking into account that

w1ðNnSn;V jNnS nÞaM
w
1 ðNnSn;V jNnS nÞaM

w
1 ðN;VÞ we conclude that

(also in this case) player 1 cannot get a strictly larger payo¤ than w1ðN;VÞ.

Finally, we show that, at stage 0, to make a bid di¤erent from p is not a
profitable deviation. Suppose that player i bids pi < p, which implies that i is
not the initial proposer. If he rejects wðN;VÞ then, as we saw before, he ob-
tains at most wiðN;VÞ. Suppose now that player i bids pi > p. Then, he be-
comes player 1 and must make an o¤er x A VðNÞ. If there exists a player j0 1
such that xj < p1M

w
j ðN;VÞ þ ð1 	 p1Þwj, x will be rejected and using similar

arguments to those used before we can conclude that player 1 gets at most
w1ðN;VÞ. If xNn1 b wNn1ðN;VÞ, x will be accepted but since x A VðNÞ and

wðN;VÞ A PðVðNÞÞ we conclude that x1 < w1ðN;VÞ. Therefore, s is an SPNE

of GðN;VÞ. r

Lemma 2. In any SPNE of GðN;VÞ any player i has an expected payo¤ of at
least wiðN;VÞ.

Proof of Lemma 2: First we prove that if player i0 1 rejects the o¤er of player
1 and the players of Nni are playing according to an SPNE then player i gets
p1M

w
i ðN;VÞ þ ð1 	 p1Þwi. Suppose that player i proposes ðS i; xiÞ. Using simi-

lar arguments to those already used in the proof of Lemma 1 we can conclude
that player i has to propose ðS i; xiÞ as in s and players in S i will accept it,
which means that player i gets M

w
i ðN;VÞ with probability p1 and wi with

probability ð1 	 p1Þ. We can also show that player i can not obtain strictly
more.

We now prove that in any SPNE any player i0 1 receives at least p1M
w
i �

ðN;VÞ þ ð1 	 p1Þwi. We prove it by finding a deviation of player i which gives

him p1M
w
i ðN;VÞ þ ð1 	 p1Þwi. Assume that player i0 1 makes a bid p 0

i < pn

instead of pi. Then player i (although he becomes player n we will still refer to
him as player i) is the first who answers the o¤er of player 1. If player i rejects
it we proved before that he will receive p1M

w
i ðN;VÞ þ ð1 	 p1Þwi.

Now, to get a contradiction, suppose that there exists an SPNE where a
player, i, receives a payo¤ yi < wiðN;VÞ. We study several cases:

1. p1 > p. Then, player i cannot be a responder; otherwise, we have just
proved that his payo¤ would be at least p1M

w
i þ ð1	 p1Þwi, which is strictly
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larger than pM
w
i þ ð1 	 pÞwi ¼ wiðN;VÞ. Therefore, i is the proposer, and

hence, i ¼ 1. Now we distinguish two cases:. p2 b p. Suppose that player 1 makes a bid p 0
1 < pn. Then, if he rejects the

o¤er of player 2 he obtains p2M
w
1 ðN;VÞ þ ð1 	 p2Þw1 b w1ðN;VÞ, as we

saw at the beginning of the proof. But this is a contradiction because we
found a deviation of player 1 (p 0

1 < p1) which strictly improves his pay-
o¤.. p2 < p. Suppose player 1 makes a bid p and o¤ers x A PðVðNÞÞ such
that x1 > y1 and for all i0 1, xi ¼ wiðN;VÞ þ e where e > 0 is chosen in
an appropriate and obvious way. The players of Nn1 will accept x (if
player i rejects x we already proved that he would obtain pM

w
i ðN;VÞ þ

ð1 	 pÞwi ¼ wiðN;VÞ). Then, player 1 can strictly improve his payo¤ by
bidding p instead of p1, which is a contradiction.

2. p1 < p. Suppose player i makes a bid p. Then, he becomes the winner of
the auction because p1 was the largest bid (again, we will still refer to him
as player i). Moreover, assume that i o¤ers any x A PðVðNÞÞ with the prop-
erty that xi > yi and for all j0 i, xj ¼ wjðN;VÞ þ e where e > 0 is chosen

in an appropriate way. Players in Nni will accept x (we have already
proved that if player j rejects x he would obtain pM

w
j ðN;VÞ þ ð1 	 pÞwj ¼

wjðN;VÞ). Then, player i can strictly improve his payo¤ by bidding p

instead of pi, which is a contradiction.
3. p1 ¼ p. We study several cases:. i0 1. If player i makes a bid p 0

i < pn with similar arguments to the case
p1 > p and p2 b p we obtain that player i can strictly improve his payo¤.. i ¼ 1 and p2 ¼ p. If player 1 makes a bid p 0

1 < pn with similar arguments
to the case p1 > p and p2 b p we obtain that player 1 can strictly im-
prove his payo¤.. i ¼ 1 and p2 < p. Again, with similar arguments to those used in the case
p1 > p and p2 < p we can conclude that player 1 can strictly improve his
payo¤. 9

The proof of Theorem 4 finishes by noticing that by the definition of
GðN;VÞ and Lemma 2 in any SPNE each player i has an expected payo¤ of
wiðN;VÞ because wðN;VÞ A PðVðNÞÞ. 9

6 The Lambda-transfer Chi-value

Shapley (1969) defined the family of l-transfer TU-games corresponding to
an NTU-game. Using this family of games, and their corresponding Shapley
values, he defined the NTU-Shapley value. We proceed in the same way using
our Chi value for TU-games instead of the Shapley value.

Define DN ¼fl ARN j
P

i AN li ¼1 and lib0 for all ig as the n-dimensional

unit simplex. Given an NTU-game ðN;VÞ we say that the vector l A DN

is feasible if sup
P
i AS

lixi j x A VðSÞ

 �

< y for all SJN. For each feasible

vector l A DN we define the TU-game ðN; vlÞ by associating with each

coalition SJN the number vlðSÞ ¼ sup
P
i AS

lixi j x A VðSÞ

 �

.
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Definition 4. The Lambda-transfer Chi-value on VN, denoted by wL, associates
to each ðN;VÞ A VN the set

wLðN;VÞ ¼ fx A VðNÞ j l � xb wðN; vlÞ for some l A DN feasibleg:

Before stating a result establishing su‰cient conditions under which the
Lambda-transfer Chi-value set is non-empty we need to define two standard
properties of NTU-games.

Definition 5. An NTU-game ðN;VÞ is compactly generated if for all SJN there
exists a compact set KS HRS with the property that VðSÞ ¼ fx A RS j xa y
for some y A KSg. An NTU-game ðN;VÞ is convex if for all SJN the set
VðSÞ is convex.

Theorem 5. Let ðN;VÞ be a totally essential, compactly generated, and convex
NTU-game. Then, wLðN;VÞ0q.

Proof: First, we will show that if the NTU-game ðN;VÞ is totally essential then
for any feasible l A DN the TU-game ðN; vlÞ is essential. Consider any i A N.
By definition vlðiÞ ¼ liwi. Moreover, as ðN;VÞ is totally essential,

vlðNÞ ¼ sup
X
i AN

lixi j x A VðNÞ
( )

b
X
i AN

liwi

¼
X
i AN

vlðfigÞ;

which means that the TU-game ðN; vlÞ is essential.
The non-emptiness of the set wLðN;VÞ follows using a fixed-point argu-

ment similar to that of Shapley (1969). 9

The game of Example 2 illustrates the fact that, in general, the Chi-
compromise value and the Lambda-transfer Chi-value may be di¤erent. After
a simple, but very tedious computation, it is possible to see that wLðN;VÞ ¼
ð0:33; 0:33; 0:33Þ while wðN;VÞ ¼ ð0:5; 0:5; 0Þ.

7 Concluding remarks

Before finishing this paper we would like to briefly compare our proposal with
other NTU-values. As with all compromise values it is easier to compute than
the Shapley, Harsanyi, and the Consistent values. However, the Shapley and
Harsanyi values have nice characterizations, while those of all compromise
values including ours are ad hoc (in the sense that the vectors of maximum and
minimum aspirations are used in the definitions of some of the key axioms);
on the contrast, to our knowledge the Consistent value has yet to be fully char-
acterized (Maschler and Owen (1989) characterize it for the class of hyper-
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plane games). Except for the Compromise value and the W-value, whose ex-
istence is guaranteed only for games with non-empty cores (a proper subclass
of compromise admissible NTU-games) and superadditive games respectively,
the existence of all other NTU-values is guaranteed for classes of games which
are relatively larger than these and unrelated to each other. Finally, to our
knowledge, only the Consistent value (Hart and Mas-Colell (1996)), the W-
value, and our Chi-compromise value have been shown to be implementable
by extensive-form games.
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Bergantiños G, Massó J (1996) Notes on a new compromise value: the w-value. Optimization
38:277–286

Bergantiños G, Casas-Méndez B, Vázquez-Brage M (2000) A non-cooperative bargaining proce-
dure generalising the Kalai-Smorodinsky bargaining solution to NTU-games. International
Game Theory Review 2:273–286

Borm P, Keiding H, Mclean RP, Oortwijn S, Tijs S (1992) The compromise value for NTU-
games. International Journal of Game Theory 21:175–189

Harsanyi J (1963) A simplified bargaining model for the n-person cooperative game. International
Economic Review 4:194–220

Hart S, Kurtz M (1983) On the endogenous formation of coalitions. Econometrica 51:1047–1064
Hart S, Mas-Colell A (1996) Bargaining and value. Econometrica 64:357–380
Kalai E, Samet D (1985) Monotonic solutions to general cooperative games. Econometrica

53:307–327
Kalai E, Smorodinsky M (1975) Other solutions to Nash’s bargaining problem. Econometrica

43:513–518
Maschler M, Owen G (1989) The consistent Shapley value for hyperplane games. International

Journal of Game Theory 18:389–407
Maschler M, Owen G (1992) The consistent Shapley value for games without side payments. In:

Selten R (ed.) Rational Interaction, New York: Springer-Verlag, pp. 5–12
Moulin H (1984) Implementing the Kalai-Smorodinsky bargaining solution. Journal of Economic

Theory 33:32–45
Otten GJ, Borm P, Peleg B, Tijs S (1998) The MC-value for monotonic NTU games. Interna-

tional Journal of Game Theory 27:37–47
Owen G (1972) A value for non-transferable utility games. International Journal of Game Theory

1:95–109
Roth A (1980) Values of games without side payments: Some di‰culties with the current con-

cepts. Econometrica 48:457–465
Shafer W (1980) On the existence and interpretation of value allocations. Econometrica 48:467–

477
Shapley LS (1969) Utility comparisons and the theory of games. In: Guilbau T (ed.) La Decision.

Editions du CNRS, Paris, pp. 251–263. Reprinted in: Roth A (ed.) (1988) The Shapley value.
Cambridge University Press, Cambridge, pp. 307–319

Shapley LS, Shubik M (1969) On market games. Journal of Economic Theory 1:9–25

286 G. Bergantiños, J. Massó


